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Abstract

Motivation: A major hindrance towards using Machine Learning on medical datasets is the discrepancy between a large
number of variables and small sample sizes. While multiple feature selection techniques have been proposed to avoid the
resulting overfitting, overall ensemble techniques offer the best selection robustness. Yet, current methods designed to
combine different algorithms generally fail to leverage the dependencies identified by their components. Here, we propose
Graphical Ensembling (GE), a graph-theory-based ensemble feature selection technique designed to improve the stability
and relevance of the selected features.
Results: Relying on four datasets, we show that GE increases classification performance with fewer selected features. For
example, on rheumatoid arthritis patient stratification, GE outperforms the baseline methods by 9% Balanced Accuracy
while relying on fewer features. We use data on sub-cellular networks to show that the selected features (proteins) are
closer to the known disease genes, and the uncovered biological mechanisms are more diversified. By successfully tackling
the complex correlations between biological variables, we anticipate that GE will improve the medical applications of
machine learning.
Availability and Implementation: https://github.com/ebattistella/auto_machine_learning
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Introduction

The ability of machine learning (ML) to detect novel disease-

specific biomarkers from patterns in the data has the potential to

revolutionize medicine. Yet, its predictive power is often limited

by the high number of variables, also called features, compared

to the small number of available training samples (Drucker

and Krapfenbauer [2013]). This can lead to overfitting,

representing an outcome too specific to a dataset, offering biased

and unreliable conclusions (Hawkins [2004]). Acceptance by

physicians also requires the interpretability of the predictions.

Hence, dimensionality reduction methods (Chandrashekar and

Sahin [2014], Guyon and Elisseeff [2003], Pepke and Steeg [2017])

have been proposed to identify a small number of biomarkers

to use for classification. These techniques rely on statistical

analysis (Bailey et al. [2018]), classifiers (Li et al. [2017]),

and expert knowledge (Liu et al. [2020]) to identify the most

informative variables.

The low sample size can also lead to an unstable feature

selection defined by an outcome specific to the experimental

settings (He and Yu [2010]). To increase robustness (Qayyum

et al. [2021]), ensemble approaches combine the strengths of

several feature selection components, improving the results’

stability and accuracy (Parvandeh et al. [2020], Saeys et al.

[2008b]) through a more thorough exploration of the space of

possible selections (Bolón-Canedo and Alonso-Betanzos [2019]).

While ensemble approaches have been used for feature selection

in the past, they have often been limited to simple techniques

such as majority or weighted voting (Caba et al. [2021]), hill

climbing (Torgo and Gama [1996]), ablation (Battistella [2021])

or genetic algorithms (Tsymbal et al. [2005]). By overlooking

the synergistic effect of the features in each feature selection

component, these approaches might break the complementarity

of features selected by different components and introduce

redundant information.

Graphs are a powerful tool to capture intricate relations

within high-dimensional data. They have been used in various

applications, including medical network analysis (Barabási

et al. [2011]) and ML approaches such as Graph Neural

Networks (Scarselli et al. [2008]). Despite their potential, the

use of graph theory as an ensemble method has been limited.

Most of the methods focus on feature selection on natural

graph structures in the data (Rakhimberdina et al. [2020]) or

similarity-based graphs (Hashemi et al. [2020], Joodaki et al.

[2021], Chamlal et al. [2022]).

In this work, we introduce Graphical Ensembling (GE), a

novel application of graph theory to ensemble feature selection
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approaches exploiting the relations between features highlighted

by different learners, enabling us to tackle both overfitting and

performance robustness. As we show, the method enhances

relevance and eliminates redundancy within the selection while

being highly adaptable and modular. To evaluate the proposed

approach, we conducted extensive experiments on four medical

datasets covering rheumatoid arthritis (RA), cancer, Covid-19,

and myocardial infarction (MI), characterized by a wide range

of data types, number of classes, balance between the classes,

and variable-to-sample ratios. We compare the performance

of our approach to baseline and task-specific feature selection

approaches using a systematic classification framework to ensure

a fair comparison. The relevance of our automatic pipeline is

tested against a referential autoML method (Le et al. [2020]).

Finally, we show that Graphical Ensembling represents a unique

method relying on graph theory for assembling a minimal set of

complementary features from diverse selections of features.

Methods

Overview of Graphical Ensembling
GE methods for feature selection leverage multiple feature

selections on multiple folds of cross-validation to characterize the

complementarity of features for a given task. The information

on correlations of groups of features gathered by graphical

ensemble methods corresponds to multi-collinearity information.

To exploit this complex information, we introduce the concept

of co-selection graph and its generalization, the co-importance

graph. In these graphs, nodes represent features, and links

are weighted by the number of times the features have been

selected together in the case of the co-selection graph, or by the

co-importance weights in the case of the co-importance graph.

The co-importance weight is defined as the aggregation of the

importance weights the various feature selection techniques

attribute to the features. The higher the weight, the more

relevant to the task the pair of features is.

k-Heavy and k-W Heavy Consensus Feature Selection

We propose the concept of k-Heavy Consensus Feature Selection

(k-Heavy) and its extension on the co-importance graph, the k-

Weighted Heavy Consensus Feature Selection (k-W Heavy) for

ensemble feature selection. These methods use the notion of the

k-heaviest subgraph (Letsios et al. [2016]), which corresponds

to the subgraph of k nodes presenting the highest sum of edge

weights. We consider several feature selection techniques applied

over multiple cross-validation splits. For a pair of features (i, j)

and a feature selection technique f , let Mf
i,j be the number of

splits over which f selected both i and j simultaneously. We

establish a co-selection matrix M where Mi,j is the sum over

all the feature selection methods f of Mf
i,j . In most ensemble

feature selection methods, only the total number of selections of

a given variable is used, i.e., Mi,i. We assume and prove in this

paper that the other components of the co-selection matrix are

valuable, indicating that each feature selection method proposes

a selection of complementary variables with a low redundancy

on every split. Then, the proposed approach aims to aggregate

this knowledge over all splits and selection techniques to extract

a set of robust features maximizing the co-selection and still

verifying the complementarity and redundancy-free properties.

To leverage this co-selection information, we rely on an

algorithm from graph theory and represent the matrix by a

graph G = (V,E,w) where the nodes V are the features

and the edges E are weighted by the function w such as for

e = (i, j) ∈ E, w(e) = Mi,j . Our co-selection maximization

objective will be translated as selecting the subset of k nodes

N maximizing the sum of the edges’ weights in the graph

induced by N , which corresponds to the well-studied Heaviest

k-Subgraph problem. This NP-hard problem can be solved

exactly or approximately through a branch and bound approach

as proposed in (Letsios et al. [2016]). We applied their exact

resolution method. However, the proposed pipeline could be sped

up using the approximate one in case of a sizable co-selection

graph due to the high dimensionality of the data and lowly

constraining feature selection techniques.

As an extension of this approach, we rely on the importance

weights of the feature selection techniques to build a co-

importance graph. We denote I(f, s, i) the importance weight of

feature i on split s according to the feature selection method f .

The weight of edge e between feature i and feature j is defined

as:

w(e) =
∑
s,f

min(I(f, s, i), I(f, s, j))

The co-importance of (i, j) according to the feature selection

technique f is defined as the minimum importance f grants to

i and the one it grants to j. Intuitively, the weight of a feature

on fold i with feature selection technique f is seen as a capacity.

Thus, co-importance corresponds to the most limiting capacity

between two features.

Systematic Comparison Pipeline
We propose an automatic classification pipeline adapted

from (Chassagnon et al. [2021]) to perform feature selection,

classification model tuning, and selection (see Figure 1).

This framework enables a fair comparison of the different

ensemble feature selection methods through standardization

of the feature selection and the classification steps. We provide

new rules for selecting the best classification model, formalized

in Supplementary Material S0.3, to improve the fairness of

comparison through better automatization. These rules rely

on combinations of the different classification metrics and

enforce the average training and validation performance over the

different cross-validation folds to be within a chosen threshold

(sanity constraint) while selecting the model with the best-

averaged validation performance (efficiency constraint). The

sanity constraint is used to prevent overfitting, which is often

characterized by too high training performance compared to

the validation. The efficiency constraint aims at maximizing

the overall performance. Performances are then evaluated on an

unseen test set.

Classification Framework

The main steps of the pipeline are:

1.Preprocessing: The data is normalized after the splitting using

only the training set to avoid leaking information from the

test set on the training set.

2.Feature Selection: We apply several feature selection methods

on cross-validation splits. This approach is flexible and

can leverage any selection technique, whether statistical

or machine learning-based. We employed seven techniques

focusing on varying data properties (details are provided in

Supplementary Material S0.13).

3.Graphical Ensemble Feature Selection.

4.Classifier Training and Prediction: The resulting signature

from the ensemble feature selection is used to train classifiers

and perform prediction. We used 15 classifiers along with

3 ensemble methods (details are provided in Supplementary

Material S0.13).

5.Model Selection: The final model is selected using rules as

defined in Supplementary Material S0.3. These rules take into
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Fig. 1. Proposed k-W Heavy Pipeline. An overview of the different steps of the proposed feature selection and classification approach. (a) After data

splitting and normalization, we perform feature selection. (b) We use the 8 selection methods listed in the figure to define a matrix of co-importance

weights. We define the co-importance graph whose nodes are the features and edges are weighted by the co-importance weights. Then, the proposed

Graphical Ensembling feature selection technique enables us to identify the signature of variables. (c) In this signature’s space, we train the 13 considered

classification models, and select the best-performing ones to build 3 ensemble models. Finally, we select the model reporting the best overall performance

for testing using the proposed model selection rules.

Dataset Prediction
Data

Type
#Variables #Patients

#Mild

Cases

#Severe

Cases

RA-MAP
RA

Severity

PBMCs

+

Clinical

17,817 227 126 101

Covid-19
Covid

Severity

Imaging

+

Clinical

543 693 554 139

MI Complications

Metabolite

+

Clinical

111 1,700 663 1037

TCGA

Cancer

Type

(24 classes)

RNAseq 20,531 7045 NA NA

Table 1. Description of the data and tasks considered. We consider

four medical datasets offering different challenges. RA-MAP has few

samples relative to the high number of features. Covid-19 presents

an important unbalance between the two classification classes. MI

has many samples and few noisy variables. TCGA includes 24 classes

and an important number of samples and variables.

account multiple classification metrics and can favor different

properties in the predictions.

6.Evaluation: Finally, the best model is assessed on the unseen

test set.

Tasks and Baseline Methods
We conducted experiments on four datasets with varying

numbers of samples, dimensionalities, data types, and tasks

(see Table 1):

• RA-MAP (Cope et al. [2017]): The dataset includes 227

samples of patients suffering from Rheumatoid Arthritis

(RA) for which gene expression in peripheral blood

mononuclear cells covers 17, 817 genes, and 30 clinical

variables (Section S0.13). The task considered on this dataset

is patient severity stratification. Severity is assessed using

the rheumatoid factor (RF), with samples labeled as severe

if RF ≥ 100 and mild otherwise (Nielsen et al. [2012]).

• Covid-19 (Chassagnon et al. [2021]): The dataset of 693

patients affected by Covid-19 reports 543 imaging and clinical

variables. The task considered on this dataset is patient

severity stratification three days after diagnosis. We compare

to algorithm KEA, and physician experts’ performance

from (Chassagnon et al. [2021]).

• TCGA (Thorsson et al. [2018]): The dataset is coming from

The Cancer Genome Atlas (TCGA https://www.cancer.gov/

tcga) including 20, 531 genes for 7045 samples across 24

different tumor types. The task considered on this dataset

is cancer types classification using RNAseq gene expression

data. References (Battistella et al. [2019, 2021]) propose

this task to determine a small set of genes characteristic of

tumor type that could be used to devise a more time and

cost-efficient gene screening method to determine metastasis’

primary sites clinically. They provide a baseline method

named COMBING.

• MI (Golovenkin et al. [2020]): The dataset of Myocardial

Infarction (MI) patients includes 1, 700 samples, and 111

clinical and metabolites. The task considered on this dataset

is MI complications after one-day prediction. For conciseness,

these results are reported in Supplementary material.

Each dataset was chosen because of the diverse challenges it

presents: a high dimensionality and a complex task with many

classes (TCGA), a high dimensionality with a low number of

samples and two types of features (RA-MAP), an unbalanced

dataset with data extracted from different modalities and centers

(Covid-19), and multiple noisy or irrelevant features (MI). In

addition, the tasks tackled are well-studied. The TCGA is a

referential dataset in genomics (Tomczak et al. [2015]). Covid-

19 has been used in several articles and designed for this

specific task (Chassagnon et al. [2021, 2020], Battistella et al.

[2022]). RA-MAP and MI are representative benchmarks of

usual medical cohorts presenting a limited number of samples,

noise, and a high number of features. They both address tasks of

prime importance (Nielsen et al. [2012], Martin-Gutierrez et al.

[2022], Farah et al. [2022], Oliveira et al. [2023]). To ensure the

robustness of our conclusions, we report results for four different

seeds generating four different training and test splits on each

dataset.
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To evaluate the performance of our proposed approach,

we compare our results to several state-of-the-art pipelines

(Supplementary Material S0.2):

• Majority Voting (MV) Ensemble Feature Selection (Caba

et al. [2021]) is an ensemble feature selection method that

keeps the most frequently selected features across all splits

by all composing feature selection techniques.

• Weighted Majority Voting (WMV) Ensemble Feature

Selection (Saeys et al. [2008a]) is an adaptation of MV in

which we consider the average importance weight given to a

feature by the feature selection techniques.

• Tree-based Pipeline Optimization Tool (TPOT) (Le et al.

[2020]) is an AutoML method that relies on a genetic

algorithm to explore thousands of possible ML pipelines

and exploit the best ones.

• COMBING (Battistella et al. [2021]) is an unsupervised

method, that relies on clustering techniques to identify a

relevant set of complementary genes, originally designed to

discover cancer biomarkers on TCGA.

• Knowledge-driven Ensemble Approach (KEA) (Chassagnon

et al. [2021]) is a method leveraging the pipeline we adapt in

this paper with an MV ensemble feature selection technique

fine-tuned to obtain state-of-the-art results on the Covid-

19 dataset. It relies on expert radiologists’ knowledge to

tune the feature selection by separating the features into

medically relevant categories and granting more weight to

studied features.

• GHOST (Battistella et al. [2022]) is a higher-order distance

learning approach applied to Covid-19 using conditional

random fields to define the best-suited metric for the task.

• No Selection: All the features are used for the prediction as

a sanity check of the performance of the feature selection

(Not performed on TCGA for tractability issues).

• No Ensemble: The feature selection methods are used alone,

and we keep the one with the highest performance. This

constitutes a sanity check of the relevance of the ensemble

approaches (Not performed on RA-MAP and TCGA for

tractability issues).

The MV and WMV baseline methods rely on the same pipeline

as the proposed Graphical Ensembling except for the ensembling

of the feature selection, allowing the testing of the relevance

of the proposed graph-based method. Thus, MV and WMV

represent ablation studies of k-Heavy and k-W Heavy regarding

the use of graph theory, while k-Heavy is an ablation study

of k-W Heavy regarding the use of the co-importance weights.

As alternative ML pipelines, TPOT, Combing, and KEA allow

for assessing the relevance of the proposed ML classification

framework.

We also assessed the relevance of the ML-based approaches

against two field-specific medical scores:

• Eular Score (ES) (Biliavska et al. [2013]) is a clinical score

designed to characterize the severity of RA in patients.

• Consensus of Physicians (CP) (Chassagnon et al. [2021]) is

a combination through an MV approach of the predictions

of three expert radiologists performed on Covid-19, relying

on the patients’ imaging and clinical information.

Evaluation
To evaluate the performance of each method, we use a range

of classification metrics, including Balanced Accuracy (BA),

Weighted Precision (WP), Weighted Recall (WR), and Weighted

F1 score (WF) on training (Tr) and test (Te) (definitions

in Supplementary Material S0.1). The results are presented

in boxplots aggregating the results over all seeds for better

interpretability in Figure 2 (see Supplementary Material S1

for the exact numbers with confidence intervals (CI) and

Supplementary Material S2 for the performance on each seed to

assess their robustness).

Graphical Signature Evaluation

We rely on network analysis to provide a more biologically-

based evaluation of the quality of the signatures of features

composed of genes. It has been shown that in the Protein-Protein

network (PPI), we can define a disease module (Barabási et al.

[2010]) to characterize disease-associated gene interactions. In

this article, to define the PPI, we relied on the work from (Gysi

and Barabasi [2022]), which combined and curated 21 datasets

to reach 536, 965 interactions for 18, 217 proteins. In addition,

they identified the genes associated with 861 diseases, including

RA. We defined the RA module from those genes with their

Largest Connected Component (LCC) in the PPI. The LCC is

the largest subgraph for which a path exists between any pair

of nodes in the subgraph. Then, the evaluation of the genes

selected by a given ensemble method is performed regarding two

criteria.

I.The selected genes have to provide relevant information on

the disease. Thus, their distance in the PPI to the disease

LCC has to be minimal.

II.The selected genes have to provide good coverage of the

possible biological processes. Thus, their distance from one

another has to be important (Safari-Alighiarloo et al.).

Each criterion by itself brings relevant information. However,

it is their association that ensures a good description of the

relevant area of the PPI around the disease module. We defined

two graphical metrics to evaluate a feature selection method

according to those principles. The first metric is the average

distance in the PPI of a selected gene to the LCC of the disease

of interest. The second metric is the average distance between

two selected genes. Those metrics are then averaged over the

different seeds considered in the experiments. Besides, we defined

a random signature of 100 genes selected without repetition per

considered seed to obtain referential measures.

Genome Wide Association Study (GWAS) Analysis

GWAS (Welter et al. [2013]) is commonly used to identify

genomic variants statistically associated with a risk for a

disease or particular trait. Toward a better interpretation of

the genes selected and a quantitative comparison between the

different selection methods, we assumed that the coverage by

GWAS of the genes associated with RA is good enough to be

used as a referential. We considered the study EFO 0000685

of the GWAS catalog to characterize RA. We estimated the

overlap between the selected genes and GWAS ones for each

selection method, and its statistical significance estimated

through a hypergeometrical test. More specifically, we defined

the hypergeometrical test as the probability:

p(k,M, n,N) =

(
n

k

)(
M − n

N − k

)
(
M

N

) (1)

In our settings, k represents the size of the overlap between the

selected genes and the GWAS, M is the total number of genes in

the PPI, n is the number of coding genes associated with RA in

GWAS, and N is the total number of selected genes. Finally, we

estimate the probability of randomly obtaining a larger overlap

using the p-value that corresponds to 1 − cdf(p(x,M, n,N))

where cdf is the cumulative distribution function.
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(a) RA-MAP

(b) Covid-19

(c) TCGA
Fig. 2. Classification performance on four datasets. We compare the results of the proposed method, k-W Heavy, with several state-of-the-art

ensembling feature selection, task-specific, and autoML approaches relying on four different metrics: Balanced Accuracy, Weighted Precision, Weighted

Recall, and Weighted F1-Score. Four medical datasets are used, and the results presented are averaged over four different seeds to split the datasets

between training and test sets. The proposed k-W Heavy outperforms all the other approaches

on all the tasks except TCGA, overall providing higher performance with lower variance. On the TCGA dataset, k-W Heavy

presents better results than the feature-selection-based approaches, only outperformed by the autoML approach TPOT, which is not

constrained by selecting a low number of features.

Results
RA-MAP
The RA-MAP dataset presents a significant challenge for

machine learning due to its high dimensionality and small sample

size. This challenge is obvious in Figure 2a, highlighting that

none of the baselines reach 60% average performance on any

metric. The best ML baseline, MV, reports 55% of average BA

and 56% of average WP, WR, and WF on test (Table 2), which

is indistinguishable from a random outcome.

In contrast, the proposed k-W Heavy method successfully

extracts signal from the data, achieving 64% BA, WP, WR, and

WF. Moreover, the maximal difference between the metrics on

the training and test sets for MV is 30%, while the proposed

method reports a reduced difference of only 11%, indicating

its ability to avoid overfitting and generalize better. Most

importantly, MV requires 21 features on average to perform

the classification, while the k-W Heavy uses only 9.5 features.

The improved performance of the proposed K-W Heavy over

MV and WMV proves the relevance of graph-based approaches

for extracting a signal in complex medical datasets. Besides,

only k-W Heavy outperforms the use of classifiers without any

feature selection (see Table S3). At the same time, the improved

performance over TPOT highlights the need for feature selection

and ensemble techniques to improve robustness and prevent

overfitting.

Finally, we find that k-W Heavy performs better than the

Eular Score, a clinical score used in patient care, and improves

BA by 5%, WP and WR by 3%, and WF by 4% while presenting

better training performance by 22% on all metrics.

Next, we assess how the genes selected by k-W Heavy relate

to biological processes associated with RA. For this purpose, we

constructed the human Protein-Protein Interaction network

(PPI), whose 18, 217 nodes are proteins, and the 536, 965

links are the experimentally detected binding interactions

between proteins derived from 21 public databases (Gysi and

Barabasi [2022]). We labeled the 27 genes uniquely selected

over the 4 different seeds on the PPI and computed the average

pairwise distance between the signature proteins (intra-signature

distance). We assume that the distance between proteins in the

PPI reflects the difference in the biological mechanisms the

genes are involved in, a low intra-signature distance indicating

a potential involvement in similar cellular processes and disease

mechanisms (Safari-Alighiarloo et al.). We also measured the

average distance between the signature genes and the 181 genes

of the Largest Connected Component (LCC) of a list of 391

RA genes collected from the literature (Gysi and Barabasi

[2022]) (see Methods for details). This distance characterizes

the closeness of the selected genes to biologically relevant RA

genes. We used 400 randomly selected genes to estimate the

average distances for random genes.

In Table 2, we report the distances computed for the

signatures of the baselines and the proposed Graphical

Ensembling. We observe that the best baseline, MV, reports an

intra-signature distance that is 22% greater than the random
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Intra-Signature LCC

Random 1.87 (+0%) 1.52 (+0%)

MV 2.28 (+21.65%) 1.55 (+1.97%)

WMV 2.22 (+18.86%) 1.53 (+0.33%)

k-Heavy 2.22 (+18.80%) 1.47 (-3.42%)

k-W Heavy 2.44 (+30.62%) 1.43 (-5.99%)

Table 2. Average distance in the PPI network between the genes

selected by the different approaches on different seeds (Intra-

Signature) and between the selected genes and RA disease LLC

(LCC). The k-W Heavy reports a higher Intra-Signature than the

baselines ensuring that the genes selected account for different

biological processes. At the same time, k-W Heavy reports a lower

LCC, which proves the biological relevance of the selected genes for

RA.

distance, while the proposed k-W Heavy has a distance 31%

higher than random. This indicates that the proposed k-W

Heavy approach selects more diversified signatures, accounting

for different biological mechanisms with less redundancy. We

illustrate this property in Figure S3, where we observed long

paths between the selected genes, highlighting the difference in

biological processes. Besides, the average distance to the LCC

of the best baseline, WMV, is higher than the random distance

by 0.33%. On the other hand, k-W Heavy reports an average

distance to the LCC that is 6% lower than random. Therefore,

the genes identified by the k-W Heavy method are closer to the

known RA genes than the baseline ones.

Finally, using the curated collection of genome-wide

associations GWAS (Welter et al. [2013]), we identify genes

statistically associated with RA (see Methods). We find that the

baselines had respectively selected 2 (MV) and 3 (WMV) genes

associated with a known increased risk for RA, which amounts to

the non-significant p-values of 0.298 and 0.0582 when taking into

consideration the total number of features selected. In contrast,

with only 27 selected genes and 3 genes associated with an

increased risk for RA, namely FBXL19, SFTPD, and TPT1, k-W

Heavy provides a statistically significant overlap with known RA

disease genes (p-value = 0.0449). This demonstrates the ability

of graph-theory-based methods for feature selection ensembling

to identify genes with greater biological relevance.

In summary, the proposed K-W Heavy extracted a more

compact signature of biologically significant genes, which

empowers improved classification performance over ML-based

as well as clinical baselines.

Covid-19
For the Covid-19 dataset, the best baseline, TPOT, reports 66%

average BA, 77% WP, 68% WR, and 70% WF. The proposed k-

W Heavy achieves a 68% BA, 78% WP, 69% WR, and 71% WF,

a better performance associated with a lower amplitude in all

the other metrics (Figure 2b), a proof of greater robustness. We

report in Table S4 the performance of a baseline using a single

feature selector without consensus. This sanity check shows

that only the k-W Heavy ensemble technique offers improved

performance over the absence of ensemble technique. In addition,

on the data split KEA was designed for, a center-wise split using

samples from unseen hospitals on the test (See Table S5), k-

W Heavy achieves 72% BA, outperforming by 2% KEA and

by 5% a consensus of three expert physicians. In this case, k-

W Heavy is the only ensemble technique outperforming the

baseline without any feature selection. Furthermore, k-W Heavy

even outperforms GHOST (BA of 71%), a computationally

expensive feature selection method that identifies higher-order

relations. This demonstrates that Graphical Ensembling offers

improved performances compared to approaches leveraging

complex interaction or combining data and knowledge-driven

information, which require field experts to help handpick

the features. Additionally, the performance variance over the

different seeds is largely reduced compared to KEA (Figure 2b),

indicating that relying on a knowledge-driven approach induces

a bias. The CI width is smaller for k-W Heavy than KEA, at

6% versus 11%.

We provide in Supplementary Material S0.5 the runtime of

Graphical Ensemble feature selection for the considered numbers

of features, demonstrating that our approach is tractable.

Note that the observed superior performance of k-W Heavy

was obtained with 9.4 signature genes on average, while the

best baseline (WMV) needs 16. Graphical Ensembling enables

us to combine imaging and clinical features synergistically to

improve the results over Combing, which was shown to fail to

use clinical variables along with imaging ones.

In summary, the proposed K-W Heavy was able to identify

a more compact signature allowing for better results and a

lesser variance beating all the baselines, including a consensus

of physicians. We cannot provide a network-based analysis on

the Covid-19 biomarkers as the considered features are not genes

and thus cannot be mapped to the PPI.

Cancer
For the TCGA dataset, we find that all methods offer results

above 80% BA, with the AutoML pipeline TPOT outperforming

the proposed k-W Heavy. The better performance of TPOT

on this dataset is likely due to our choice to limit our pipeline

to a small number of genes, which appears to be insufficient

for leveraging the full potential of the proposed pipeline on

this task. Indeed, in (Battistella et al. [2021]), the authors

show that almost perfect performances are reached by selecting

100 random genes, illustrating that the relevance of the task

dwells in minimizing the number of genes while maintaining high

performance. We reproduced the experiment and obtained 91%

BA, 93% WP, 92% WR, and 93%WF. We limited the number of

features to demonstrate the relevance of Graphical Ensembling

in obtaining better explainability, as well as to improve

our understanding of the biological mechanisms by limiting

our attention to fewer biomarkers. Indeed, as highlighted

in (Battistella et al. [2021]), to design a better gene screening

method for tumor metastasis, we must rely on a small number of

selected genes is primordial as it enables a better understanding

of their potential connection to the tumor type. As we discuss

in Supplementary Material S3, the maximal number of genes

considered does not allow to reach a plateau in performance.

While TPOT reports the best overall performance, the proposed

k-W Heavy provides increased performance compared to the

ensemble feature selection baselines by 4% BA and WR, and

3% WP and WF. Besides, k-W Heavy presents more reliable

results with a CI width in BA of only 3% against 10% for

TPOT. In addition, note that the signature of the identified

biomarkers enables us to compete with the results obtained

with COMBING’s signature, which contains half more genes.

This state-of-the-art method was proven to identify genes well-

suited for tumor characterization in (Battistella et al. [2021]).

Moreover, COMBING has been defined with a part of our test

set, which entails a high risk of data leakage. This happens

when test samples are used in the learning phase, and causes an

undue boost of COMBING signature’s performance that would

not generalize to other datasets.

In summary, the proposed K-W Heavy approach provides

better, more stable results than the ensemble feature selection

baselines. Unlike TPOT, it produces interpretable results thanks

Page 6 of 9Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae341/7688333 by M

ills C
ollege user on 07 June 2024



7

to selecting a small signature of genes and offers enhanced

performance when used to select a larger signature.

Generalization
The proposed Graphical Ensembling offers additional opportunities

for generalization to improve the accuracy and interpretability

of ML. Further considerations about its application to medicine

are discussed in Supplementary Material S0.11. First, the weight

matrix used to build the graph from which the k-heaviest

subgraph is extracted can be enriched with diverse information

types. This allows us to include any notion of similarity between

features derived from biological properties, expert knowledge,

information extracted from the literature, and graphical models.

For example, incorporating information extracted from network

analysis can provide biological and structural insights for the

feature selection task. An interesting possibility would be to

consider the network-based distance between the genes and

the disease module (Barabási et al. [2010]) for an additional

weighting of the co-importance graph. It is also possible to

consider any notion of penalization on feature pairs, such as the

acquisition cost of obtaining features from different modalities,

to favor signatures from the same modality.

In addition, the concept of a graph can be extended to a

hypergraph, allowing us to consider patterns emerging in the

co-selection graph. For instance, triplets of nodes that have been

of interest for medical applications (Benson et al. [2016]) could

be investigated to model feature interactions.

Also, Graphical Ensembling can consider any cost over

combinations of features. For example, if causality information

on the features is available, the selection of confounders could be

penalized. In this case, the identified signature will be a trade-off

between the informativeness and lack of redundancy ensured by

feature selection techniques and the added properties. Finally,

the proposed approach can be used in a regression context by

modifying the aggregated models.

Discussion

In conclusion, we proposed a novel class of ensemble feature

selection techniques relying on graph approaches called

Graphical Ensembling. We tested the proposed technique’s

relevance for various medical tasks with a fair and thorough

comparison to state-of-the-art data-specific methods.

We extensively explored the set of hyperparameters of

the baseline methods to ensure that we cover a significant

portion of the search space. Hence, we avoid the possibility

of selecting parameters working exclusively with our method.

We compared 8 feature selection methods and 15 classifiers,

each of the 4 ensemble feature selection methods was used

with 4, 000 different hyperparameters, and the classifiers tuning

took 130, 000 cross-validation. We found that the proposed

approach selects more stable features over different experimental

conditions and enables more robust classification results.

We performed different experiments to identify the context in

which Graphical Ensembling offers superior performance. First,

as demonstrated with the RA-MAP task, Graphical Ensembling

can better extract signal from noisy features, making it a reliable

choice on challenging datasets. Second, by offering a signature

geneset smaller in size on all experiments, with less redundancy

and more biological relevance, as demonstrated by the network

analysis with the RA genes module, Graphical Ensembling can

identify biomarkers for a disease that would be less expensive and

time-consuming to use in routine treatment. Third, Graphical

Ensembling performance presents a lower variance, implying

a better generalization ability to new datasets. Finally, k-W

Heavy provides a graphical overview of the relation between the

features and their complementarity. Also, note that Graphical

Ensembling has been mainly studied in this manuscript as a

method to select a small number of features as a biomarker.

Indeed, when trying to find the minimal set of predictive features,

the elimination of redundant and non-predictive features is all

the more important. For tractability’s sake, we recommend using

the approximate version of the algorithm when selecting a larger

number of features.

Graphical Ensembling offers the potential to integrate

network-based analysis into the weight matrix, enriching

the ensemble feature selection with more complex biological

interaction information. These adaptable approaches allow the

incorporation of expert knowledge, biological information, or

even literature-derived biomarkers directly into the feature

selection process. We can also generalize the study of the

dependency on the training set size we performed on Myocardial

Infarction, examining the robustness of Graphical Ensembling

to different sample sizes.

Graphical models have demonstrated their value in many

fields, including deep learning, and here, we show their utility

for ensembling methods. We introduce graph-theory-based

ensemble feature selection techniques whose performance has

been demonstrated on four different medical tasks. From a more

general perspective, this work offers unique insights into how to

combine graph theory and machine learning, demonstrating the

usefulness of graph structures for ensemble feature selection.

Data Availability
The data used in this article is publicly available. RA-

MAP dataset was published on Gene Expression Omnibus

in 2017 by John C, Ehrenstein M, Barnes MR, Lendrem

D, and Isaacs JD with the identifier GSE97810. Covid-

19 dataset is available at https://github.com/ebattistella/

Covid-MedIA. MI dataset is available at https://archive.ics.uci.

edu/ml/datasets/Myocardial+infarction+complications. TCGA

dataset is available at https://portal.gdc.cancer.gov/ and was

downloaded on 09/21/2021.

Code Availability
The code used in this article is available as modular functions

that automate feature selection, classification, and clustering

while allowing for the comparison of several state-of-the-

art methods at https://github.com/ebattistella/auto_machine_

learning.
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Bastien Caba, Dawei Liu, Aurélien Lombard, and Natasha et al.

Novikov. Machine learning-based classification of acute versus

chronic multiple sclerosis lesions using radiomic features from
unenhanced cross-sectional brain mri (4121). Neurology, 2021.

Hasna Chamlal, Tayeb Ouaderhman, and Fatima Ezzahra

Rebbah. A hybrid feature selection approach for microarray
datasets using graph theoretic-based method. Information
Sciences, 2022.

Girish Chandrashekar and Ferat Sahin. A survey on feature

selection methods. Computers and Electrical Engineering,
2014.

Guillaume Chassagnon, Maria Vakalopoulou, Enzo Battistella,

and Stergios et al. Christodoulidis. Ai-driven ct-based
quantification, staging and short-term outcome prediction of
covid-19 pneumonia. arXiv preprint arXiv:2004.12852, 2020.

Guillaume Chassagnon, Maria Vakalopoulou, Enzo Battistella,
and Stergios et al. Christodoulidis. Ai-driven quantification,
staging and outcome prediction of covid-19 pneumonia.
Medical image analysis, 2021.

Andrew P. Cope, Michael R. Barnes, Alexandra Belson, and

Michael Binks et al. The RA-MAP consortium: a working

model for academia–industry collaboration. Nature Reviews
Rheumatology, 2017.

Elisabeth Drucker and Kurt Krapfenbauer. Pitfalls and

limitations in translation from biomarker discovery to clinical
utility in predictive and personalised medicine. EPMA journal,

2013.

Christopher Farah, Yasmine Abu Adla, and Mariette Awad. Can
machine learning predict mortality in myocardial infarction

patients within several hours of hospitalization? a comparative

analysis. In 2022 IEEE 21st Mediterranean Electrotechnical
Conference (MELECON). IEEE, 2022.

Sergey E Golovenkin, Jonathan Bac, Alexander Chervov, and
Evgeny M Mirkes et al. Trajectories, bifurcations, and pseudo-

time in large clinical datasets: applications to myocardial

infarction and diabetes data. GigaScience, 2020.
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